TMCnet News

New study shows promise of ALung's Hemolung technology to help protect the injured lung
[February 15, 2016]

New study shows promise of ALung's Hemolung technology to help protect the injured lung


ALung Technologies, Inc., a leading provider of low-flow extracorporeal carbon dioxide removal (ECCO2R) technologies for treating patients with acute respiratory failure, announced today the publication of new results from an investigator-sponsored clinical study of its Hemolung Respiratory Assist System (RAS) in patients with moderate acute respiratory distress syndrome (ARDS). The Hemolung RAS, a minimally invasive artificial lung device which removes carbon dioxide independently of the lungs through a process called Respiratory Dialysis®, was shown to safely and effectively facilitate an ultra-protective mechanical ventilation strategy in this group of patients.

Many patients with respiratory failure require the assistance of a ventilator as a life-sustaining measure. Unfortunately, the positive pressure exerted by the ventilator can lead to additional injury, complications, and increased mortality. Reducing ventilator pressures has been one of the most important interventions shown to improve outcomes in these critically ill patients, and further reduction of ventilator settings beyond today's standards may be beneficial. A limiting factor of this approach is the accumulation of carbon dioxide in the blood when ventilation is reduced. The Hemolung RAS removes carbon dioxide directly from the blood, facilitating low volume, low pressure, ultra-protective mechanical ventilation while maintaining normal carbon dioxide levels.

The feasibility of providing ultra-protective ventilation using the minimally invasive approach of the Hemolung RAS was tested in this new study. Four leading European hospitals enrolled fifteen patients with moderate ARDS. The trial successfully achieved its primary endpoint of reducing tidal volume by approximately 33% while maintaining normal carbon dioxide levels. Driving pressures were also significantly reduced, and complications were minimal. Results of the study were recently published in the journal Critical Care.



"In our study, extracorporeal CO2 removal with the Hemolung RAS safely facilitated significant reductions in ventilator pressures and volumes, a strategy which may help to minimize ventilator induced lung injury in patients with ARDS," said Dr. Jordi Mancebo, Director of Intensive Care at Hospital de Sant Pau, Barcelona, Spain. "We believe that this technology is very promising, and look forward to advancing the evaluation of ECCO2R as a participant in the SUPERNOVA study."

ALung is participating in two larger ARDS trials to determine the effect of an ultra-protective ventilation strategy on mortality. Currently enrolling patients is the European Society of Intensive Care Medicine's SUPERNOVA study. ALung has also been chosen as the sole technology provider for the 1140-patient UK REST Trial, the world's first pivotal study of ECCO2R sponsored by Queen's University Belfast.


Links

Fanelli et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Critical Care (2016) 20:36.

About ALung Technologies

ALung Technologies, Inc. is a privately-held Pittsburgh-based developer and manufacturer of innovative lung assist devices. Founded in 1997 as a spin-out of the University of Pittsburgh, ALung has developed the Hemolung RAS as a dialysis-like alternative or supplement to mechanical ventilation. ALung is backed by individual investors and venture firms including Allos Ventures, Birchmere Ventures and West Capital Advisors, LLC.

For more information about ALung and the Hemolung RAS, visit www.alung.com.

This press release may contain forward-looking statements, which, if not based on historical facts, involve current assumptions and forecasts as well as risks and uncertainties. Our actual results may differ materially from the results or events stated in the forward-looking statements, including, but not limited to, certain events not within the Company's control. Events that could cause results to differ include failure to meet ongoing developmental and manufacturing timelines, changing GMP requirements, the need for additional capital requirements, risks associated with regulatory approval processes, adverse changes to reimbursement for the Company's products/services, and delays with respect to market acceptance of new products/services and technologies. Other risks may be detailed from time to time, but the Company does not attempt to revise or update its forward-looking statements even if future experience or changes make it evident that any projected events or results expressed or implied therein will not be realized.


[ Back To TMCnet.com's Homepage ]