TMCnet News

Worldwide 5G Smart Antenna Industry to 2028 - 5G Antennas will be an Absolute Requirement to Support the Smart Cities Market and Related Services
[February 20, 2023]

Worldwide 5G Smart Antenna Industry to 2028 - 5G Antennas will be an Absolute Requirement to Support the Smart Cities Market and Related Services

DUBLIN, Feb. 20, 2023 /PRNewswire/ -- The "5G Smart Antenna Market by Type (Switched Multi-Beam Antenna and Adaptive Array Antenna), Technology (SIMO, MISO, and MIMO), Use Case, Application, and Region 2023 - 2028" report has been added to's offering. 

Research and Markets Logo

This report evaluates the 5G smart antenna market including key players, technologies, and solutions. This includes analysis of product and service strategy for smart antenna vendors. The report evaluates the role and importance of smart antennas in terms of 5G network optimization including data speed coverage enhancement and quality of service preservation.

The report evaluates and provides forecasts for the smart antenna market by type (SIMO, MISO, MIMO), frequency range (FR1 and FR2), connectivity, and applications. It also assesses 5G smart antenna support of IoT solutions, providing forecasts for applications and services.

The report includes revenue forecasts as well as projected smart antenna shipments from 2023 to 2028. It also includes analysis and forecasts for smart surface solutions in 6G communications for 2030 through 2035.

Select Report Findings:

  • The market for 5G smart antennas in IoT will reach $9.1B by 2028
  • 5G will provide continuous mobility largely within only metropolitan areas
  • Multiple Input Multiple Output smart antennas represent the fastest-growing type
  • In addition to network optimization, smart antennas reduce energy needs and other resources
  • 5G antennas will be an absolute requirement to support the smart cities market and related services
  • Smart antennas will benefit greatly from interworking with next generation smart surfaces technologies
  • In terms of frequency ranges, FR1 will lead through 2028, but FR2 is growing nearly three times as fast at a CAGR of 38.2%

Smart Antennas use Multiple Antennas

Smart antenna arrays use Multiple Input/Multiple Output (MIMO) at both the source (transmitter) and the destination (receiver) to improve signal quality. This is in contrast to non-array systems in which a single antenna (and signal path) is used at the source and the destination. The market for smart antennas is nothing new as they provide efficient coverage for LTE. However, 5G smart antennas will be necessary to provide mobility support for many new and enhanced apps and services such as virtual reality, self-driving cars, connected vehicles, and voice over 5G.

Smart Antennas use Beamforming

Beamforming represents the use of highly focused RF energy, which is directed at the point of need/use. This is in contrast to early technologies employed in cellular communications that were omni-directional in nature. Beamforming is used with 5G as higher frequencies are very prone to attenuation.

RF energy is focused in a narrow beam to exactly where it is needed rather than emanating the same energy in a broad area. Beamforming is especially useful for 5GNR as the higher frequency mmWave RF is subject to fading over distance and attenuation loss caused by hitting objects (buildings, cars, foliage, etc.).

A more directed beam of RF energy helps to ensure a greater probability of optimal bandwidth and signal quality. However, it is important to note that line of sight is still an issue as beamforming advantages are diminished with attenuation.

Smart Antennas to Interwork with Smart Surfaces

While largely in the R&D phase, smart surface technology will soon be productized for certain early adopter applications such as communications, heat dissipation, and various sensing solutions. The publisher sees smart surfaces initially being placed onto existing facilities such as factory walls, buildings and other assets. Over time, smart surfaces will be integrated into manufacturing and building materials. In enterprise environments, personnel will become increasingly less aware of the presence of smart surfaces as they will be prefabricated as part of walls, desks, etc.

The communications industry will benefit from smart surface technology as solutions will facilitate self-adaptable and/or reconfigurable materials that can modify radio signals between transmitters and receivers. This will enhance capacity, coverage, and security. It will also create opportunities for future applications such as positioning, localization and embedded computing/intelligence. The addiion of reconfigurable feature/functionality creates an opportunity to offer wireless-on-demand as a service.

Because 6G RF operates in a much higher frequency range than even 5G mmWave, there will be significant coverage issues due to antennation issues. The publisher predicts that the beyond 5G market will be focused on the confluence of ultra-high-speed, ultra-low-latency, and ultra-reliability within a very short range. This is because we anticipate 6G market solutions to leverage the advantages of terahertz frequencies and minimize the disadvantages, which all revolve around issues related to RF operational issues in a post-millimeter wave environment.

To solve some of the anticipated challenges, the 6G will require some of the same innovative technologies that will be put in place starting with 5G NR such as smart surfaces for improved coverage and signal relay. The publisher also envisions advances in supporting technology areas such as edge computing. In fact, we see edge computing evolving as a shared responsibility between networks and devices.

Smart Antennas and Network Optimization

Smart antennas will improve 5G coverage and optimize capacity by focusing RF signals where they are needed the most. In addition, smart antennas enhance 5G application and service mobility by facilitating amore continuous connection, which may become particularly useful at 5G coverage seams. Otherwise, a 5G enabled user experience may degrade as hand-over from 5G to LTE occurs.

5G cellular networks promise to improve many aspects of wireless communications, supporting enhanced mobile services, greater scalability for IoT systems, and ultra-reliable communications for mission-critical applications. A portion of these benefits will be based on the evolution of 4G LTE technologies as well as unique capabilities enabled by 5GNew Radio (5GNR), based on new infrastructure supporting millimeter wave (mmWave) RAN equipment.

5GNR especially needs smart antennas, because it utilizes mmWave RF propagation. 5GNR involves a much lower wavelength (millimeter as compared to centimeter to a meter for LTE) and therefore a higher frequency. Physics dictates that higher frequencies need more power and/or more coverage as an RF signal fades more than a lower frequency signal. This is why there will need to be at least an order of magnitude more antennas than required for LTE. Putting this into perspective, the US will go from roughly 30,000 antennas to 300,000 or more nationally.

5G antennas will be found virtually everywhere in metropolitan areas, but it will not be enough. While dramatically increased coverage will surely support many early 5G applications, such as fixed wireless (ISP alternative, backhaul, and fronthaul), it will not be enough to support continuous 5G mobility coverage. This will be vitally important for certain applications such as self-driving cars and connected vehicle services that often require high bandwidth on-demand.

Key Topics Covered:

1.0 Executive Summary

2.0 Introduction

3.0 5G Smart Antenna Technology and Application Analysis

3.1 Smart Antenna Types

3.1.1 Switched Multi-beam Antennas

3.1.2 Adaptive Array Antennas

3.2 Digital Antenna Array

3.3 5G NR Infrastructure and Active Antennas

3.4 Mobile Device Antennas

3.5 System Connectivity

3.6 Adaptive Beamforming

3.6.1 Digital Beamforming

3.6.2 Hybrid Beamforming

3.7 5G MIMO Multiple Input/Multiple Output

3.8 Digital Signal Processing

3.9 Software Re-Programmability

3.10 Software Defined Radio

3.11 Smart Antennas Application Sectors

3.12 Smart Antennas in IoT

3.13 Machine Learning and Artificial Neural Network

4.0 5G Smart Antenna Market Dynamics

4.1 5G Smart Antenna Market Drivers

4.2 5G Smart Antenna Market Challenges

4.3 5G Smart Antenna Solution Considerations

4.4 5G Smart Antenna Use Case Analysis

4.4.1 Voice over 5G

4.4.2 Mission Critical Communications

4.4.3 Industrial Automation and Robotics

4.4.4 Connected and Self-Driving Vehicles

4.4.5 Drones and Unmanned Aerial Vehicles

5.0 Companies Overview

5.1 Ericsson

5.1.1 Overview

5.1.2 Recent Developments

5.2 Cobham Antenna Systems

5.2.1 Overview

5.2.2 Recent Developments

5.3 Intel Corporation

5.3.1 Overview

5.3.2 Recent Developments

5.4 Samsung Electronics Co. Ltd.

5.4.1 Overview

5.4.2 Recent Developments

5.5 ArrayComm LLC

5.5.1 Overview

5.5.2 Recent Developments

5.6 Nokia Corporation

5.6.1 Overview

5.6.2 Recent Developments

5.7 Motorola Solutions Inc.

5.7.1 Overview

5.8 Broadcom Inc.

5.8.1 Overview

5.9 California Amplifier Inc.

5.9.1 Overview

5.10 Sierra Wireless (Accel Networks)

5.10.1 Overview

5.10.2 Recent Developments

5.11 ZHEJIANG JC Antenna Co. Ltd.

5.11.1 Overview

5.12 Qualcomm Incorporated

5.12.1 Overview

5.12.2 Recent Developments

5.13 Honeywell International Inc.

5.13.1 Overview

5.14 Linx Technologies

5.14.1 Overview

5.14.2 Recent Developments

5.15 Ruckus Networks

5.15.1 Overview

5.15.2 Recent Developments

5.16 ANSYS Inc.

5.16.1 Overview

5.17 Smart Antenna Technologies Ltd

5.17.1 Overview

5.18 NXP Semiconductors

5.18.1 Overview

5.18.2 Recent Developments

5.19 NEC Corporation

5.19.1 Overview

5.19.2 Recent Developments


5.20.1 Overview

5.20.2 Recent Developments

5.21 PCTEL Inc.

5.21.1 Overview

5.21.2 Recent Developments

5.22 Comba Telecom

5.22.1 Overview

5.22.2 Recent Developments

5.23 Airgain Inc.

5.23.1 Overview

5.23.2 Recent Developments

5.24 Laird Technologies

5.24.1 Overview

5.24.2 Recent Developments

5.25 MediaTek Inc.

5.25.1 Overview

5.25.2 Recent Developments

5.26 LOCOSYS Technology Inc.

5.26.1 Overview

5.27 Leica Geosystems AG

5.27.1 Overview

5.27.2 Recent Developments

6.0 5G Smart Antenna Market Analysis and Forecasts

6.1 Global 5G Smart Antenna Market 2023 - 2028

6.1.1 Total 5G Smart Antenna Market 2023 - 2028 5G Smart Antenna Market by Type 2023 - 2028

6.1.2 5G Smart Antennas by Frequency Range 2023 - 2028

6.1.3 5G Smart Antennas by Network Type 2023 - 2028

6.1.4 5G Smart Antennas by Antenna Type 2023 - 2028

6.1.5 5G Smart Antennas by Connectivity System 2023 - 2028

6.1.6 5G Smart Antenna Market by Application 2023 - 2028

6.1.7 AI Embedded 5G Smart Antenna Market 2023 - 2028 AI Embedded 5G Smart Antenna Market by AI Technology 2023 - 2028

6.1.8 5G Smart Antenna Market in IoT 2023 - 2028 5G Smart Antenna Market in IoT by Application 2023 - 2028

6.2 Regional 5G Smart Antenna Market 2023 - 2028

6.2.1 5G Smart Antenna Market by Region 2023 - 2028

6.2.2 North America 5G Smart Antenna Market by Type, Technology, Application, AI, IoT, and Leading Country 2023 - 2028

6.2.3 Europe 5G Smart Antenna Market by Type, Technology, Application, AI, IoT, and Leading Country 2023 - 2028

6.2.4 APAC 5G Smart Antenna Market by Type, Technology, Application, AI, IoT, and Leading Country 2023 - 2028

6.2.5 Latin America 5G Smart Antenna Market by Type, Technology, Application, AI, IoT, and Leading Country 2023 - 2028

6.2.6 Middle East and Africa 5G Smart Antenna Market by Type, Technology, Application, AI, IoT, and Leading Country 2023 - 2028

7.0 Conclusions and Recommendations

8.0 Appendix: Smart Surfaces in 6G Communications

For more information about this report visit

About is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

Media Contact:

Research and Markets
Laura Wood, Senior Manager
[email protected]

For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1904
Fax (outside U.S.): +353-1-481-1716


Cision View original content:

SOURCE Research and Markets

[ Back To's Homepage ]