TMCnet - World's Largest Communications and Technology Community



Global Big Data Market by Leading Companies, Solutions, Use Cases, Business Cases, Infrastructure, Technology Integration, Industry Verticals, Regions and Countries (2019-2024)
[May 03, 2019]

Global Big Data Market by Leading Companies, Solutions, Use Cases, Business Cases, Infrastructure, Technology Integration, Industry Verticals, Regions and Countries (2019-2024)

DUBLIN, May 3, 2019 /PRNewswire/ -- The "Big Data Market by Leading Companies, Solutions, Use Cases, Business Cases, Infrastructure, Technology Integration, Industry Verticals, Regions and Countries 2019-2024" report has been added to's offering.

Research and Markets Logo

This report provides an in-depth assessment of the global Big Data market, including business case issues/analysis, application use cases, vendor landscape, value chain analysis, and a quantitative assessment of the industry with forecasting from 2019 to 2024. This report also evaluates the components of Big Data infrastructure and security framework.

Report Findings

  • Big data in cognitive computing will reach $12.6B USD globally by 2024
  • Big data application infrastructure will reach $9.1B USD globally by 2024
  • Big data in public safety and homeland security will reach $5.3B USD globally by 2024
  • Real-time data will be a key value proposition for all use cases, segments, and solutions
  • Market leading companies are rapidly integrated big data technologies with IoT infrastructure

The big data market consists of infrastructure providers, data centers, data as a service providers, and other vendors. Solutions for managing unstructured data are evolving beyond systems aligned towards primarily human-generated data (such as social networking, messaging, and browsing habits) towards increasingly greater emphasis upon machine-generated data found across many industry verticals.

For example, manufacturing and healthcare are anticipated to create massive amounts of data that may be rendered useful only through advanced analytics and various Artificial Intelligence (AI) technologies such as machine learning and cognitive computing. The long-term prospect for these technologies is that they will become embedded in many different other technologies and provide autonomous decision making on behalf of humans, both directly, and indirectly through many processes, products, and services.

Emerging networks and systems such as IoT and edge computing will generate substantial amounts of unstructured data, which will present both technical challenges and market opportunities for operating companies and their vendors. Emerging big data tools such as open APIs much be implemented to facilitate data capture and processing with the ability to perform localized processing and decision making.

Big data solution provider dynamics are evolving almost as much as the data management technologies themselves. While some companies rely upon proprietary solutions, many leading companies such as Hortonworks and Cloudera offer products and services primarily based on open source Apache Hadoop technology. One important distinction between market leaders is collaboration vs. competition. For example, Cloudera competes with IBM, Microsoft, and others in data science and AI whereas Hortonworks partners with these companies.

In terms of data management and analytics technologies, the big data industry is experiencing profound changes across the entire stack including infrastructure, security, analytics, and the application layer. The data services industry as a whole is shifting from host-based network topologies to cloud-based, data-centric architectures, thereby creating enormous challenges and opportunities for transitioning and securing data systems. In concert with this shift, big data infrastructure will require strategic governance and framework for optimized security.

Advanced analytics provide the ability to make raw data meaningful and useful as information for decision-making purposes. AI enhances the ability for big data analytics and IoT platforms to provide value to each of these market segments. The use of AI for decision making in IoT and data analytics will be crucial for efficient and effective decision making, especially in the area of streaming data and real-time analytics associated with edge computing networks.

The ability to capture streaming data, determine valuable attributes, and make decisions in real-time will add an entirely new dimension to service logic. In many cases, the data itself, and actionable information will be the service. However, real-time data is anticipated to become a highly valuable aspect of all solutions as a determinant of user behavior, application effectiveness, and an identifier of new and enhanced mobile/wireless and/or IoT related apps and services.

Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR) are perhaps best known as data-intensive immersive technologies that require high bandwidth for operations. One of the least evaluated opportunities is the market opportunities associated with visualizing data and information in AR, VR, and MR environments. Much of this data will be unstructured, requiring big data analytics tools to process, categorize, and display in a meaningful manner. This will allow the end user to visualize and utilize information in ways previously inconceivable.

In addition, leading data management companies are developing tools for improved general data visualization, facilitating improved information interpretation and decision making. Coupled with AI and cognitive computing, the field of advanced data visualization and analytics known as augmented analytics is transforming otherwise useless data into highly valuable and actionable smart data, often enabling dynamic decision making that may positively impact business operations as processes, transactions, and other events occur. Much of this smart data will be monetized in a data as a service approach by enterprise thanks to leading big data service provider solutions.

Additional topics covered in this report include:

  • Big Data Technology: Analysis of infrastructure and important issues such as security and privacy
  • Big Data Use Cases: A review of investments sectors and specific use cases for the Big Data market
  • The Big Data Value Chain: An analysis of the value chain of Big Data and the major players involved within it
  • The Business Case for Big Data: An assessment of the business case, growth drivers and barriers for Big Data
  • Big Data Vendor Assessment: Assessment of the vendor landscape of leading players within the Big Data market
  • Market Analysis and Forecasts: Global and regional assessment of the market size and forecasts fo 2019 to 2024

This report also includes analysis and forecasts for streaming data analytics. IoT facilitates vast amounts of fast-moving data from sensors and devices. For many use cases, data flows constantly from the device or sensor to the network and sometimes back to the device. In some cases, these streams of data are simply stored (for potential later use) and in other cases, there is a need for real-time data processing and analytics.

Report Benefits

  • Detailed forecasts 2019-2024
  • Identify leading market segments
  • Learn about Big Data technologies
  • Identify key players and strategies
  • Understand market drivers and barriers
  • Identify opportunities in IoT data analytics
  • Understand regulatory issues and initiatives
  • Understand business case for enterprise Big Data

Key Topics Covered

1. Executive Summary

2. Introduction
2.1 Big Data Overview
2.1.1 Defining Big Data
2.1.2 Big Data Ecosystem
2.1.3 Key Characteristics of Big Data
2.2 Research Background
2.2.1 Scope
2.2.2 Coverage
2.2.3 Company Focus

3. Big Data Challenges And Opportunities
3.1 Securing Big Data Infrastructure
3.1.1 Big Data Infrastructure
3.1.2 Infrastructure Challenges
3.1.3 Big Data Infrastructure Opportunities
3.2 Unstructured Data and the Internet of Things
3.2.1 New Protocols, Platforms, Streaming and Parsing, Software and Analytical Tools
3.2.2 Big Data in IoT will require Lightweight Data Interchange Format
3.2.3 Big Data in IoT will use Lightweight Protocols
3.2.4 Big Data in IoT will need Protocol for Network Interoperability
3.2.5 Big Data in IoT Demands Data Processing on Appropriate Scale

4. Big Data Technologies And Business Cases
4.1 Big Data Technology
4.1.1 Hadoop
4.1.2 NoSQL
4.1.3 MPP Databases
4.1.4 Others and Emerging Technologies
4.2 Emerging Technologies,Tools, and Techniques
4.2.1 Streaming Analytics
4.2.2 Cloud Technology
4.2.3 Google Search
4.2.4 Customize Analytical Tools
4.2.5 Internet Keywords
4.2.6 Gamification
4.3 Big Data Roadmap
4.4 Market Drivers
4.4.1 Data Volume & Variety
4.4.2 Increasing Adoption of Big Data by Enterprises and Telecom
4.4.3 Maturation of Big Data Software
4.4.4 Continued Investments in Big Data by Web Giants
4.4.5 Business Drivers
4.5 Market Barriers
4.5.1 Privacy and Security: The Big' Barrier
4.5.2 Workforce Re-skilling and Organizational Resistance
4.5.3 Lack of Clear Big Data Strategies
4.5.4 Technical Challenges: Scalability & Maintenance
4.5.5 Big Data Development Expertise

5. Key Sectors For Big Data
5.1 Industrial Internet and Machine-to-Machine
5.1.1 Big Data in M2M
5.1.2 Vertical Opportunities
5.2 Retail and Hospitality
5.2.1 Improving Accuracy of Forecasts and Stock Management
5.2.2 Determining Buying Patterns
5.2.3 Hospitality Use Cases
5.2.4 Personalized Marketing
5.3 Media
5.3.1 Social Media
5.3.2 Social Gaming Analytics
5.3.3 Usage of Social Media Analytics by Other Verticals
5.3.4 Internet Keyword Search
5.4 Utilities
5.4.1 Analysis of Operational Data
5.4.2 Application Areas for the Future
5.5 Financial Services
5.5.1 Fraud Analysis, Mitigation & Risk Profiling
5.5.2 Merchant-Funded Reward Programs
5.5.3 Customer Segmentation
5.5.4 Customer Retention & Personalized Product Offering
5.5.5 Insurance Companies
5.6 Healthcare and Pharmaceutical
5.6.1 Drug Development
5.6.2 Medical Data Analytics
5.6.3 Case Study: Identifying Heartbeat Patterns
5.7 Telecommunications
5.7.1 Telco Analytics: Customer/Usage Profiling and Service Optimization
5.7.2 Big Data Analytic Tools
5.7.3 Speech Analytics
5.7.4 New Products and Services
5.8 Government and Homeland Security
5.8.1 Big Data Research
5.8.2 Statistical Analysis
5.8.3 Language Translation
5.8.4 Developing New Applications for the Public
5.8.5 Tracking Crime
5.8.6 Intelligence Gathering
5.8.7 Fraud Detection and Revenue Generation
5.9 Other Sectors
5.9.1 Aviation
5.9.2 Transportation and Logistics: Optimizing Fleet Usage
5.9.3 Real-Time Processing of Sports Statistics
5.9.4 Education
5.9.5 Manufacturing

6. Big Data Value Chain
6.1 Fragmentation in the Big Data Value
6.2 Data Acquisitioning and Provisioning
6.3 Data Warehousing and Business Intelligence
6.4 Analytics and Visualization
6.5 Actioning and Business Process Management
6.6 Data Governance

7. Big Data Analytics
7.1 The Role and Importance of Big Data Analytics
7.2 Big Data Analytics Processes
7.3 Reactive vs. Proactive Analytics
7.4 Technology and Implementation Approaches
7.4.1 Grid Computing
7.4.2 In-Database processing
7.4.3 In-Memory Analytics
7.4.4 Data Mining
7.4.5 Predictive Analytics
7.4.6 Natural Language Processing
7.4.7 Text Analytics
7.4.8 Visual Analytics
7.4.9 Association Rule Learning
7.4.10 Classification Tree Analysis
7.4.11 Machine Learning
7.4.12 Neural Networks
7.4.13 Multilayer Perceptron (MLP)
7.4.14 Radial Basis Functions
7.4.15 Geospatial Predictive Modelling
7.4.16 Regression Analysis
7.4.17 Social Network Analysis

8. Standardization And Regulatory Issues
8.1 Cloud Standards Customer Council
8.2 National Institute of Standards and Technology
8.4 Open Data Foundation
8.5 Open Data Center Alliance
8.6 Cloud Security Alliance
8.7 International Telecommunications Union
8.8 International Organization for Standardization

9. Key Big Data Companies And Solutions
9.1 Vendor Assessment Matrix
9.2 1010Data (Advance Communication Corp.)
9.3 Accenture
9.4 Actian Corporation
9.5 AdvancedMD
9.6 Alation
9.7 Allscripts Healthcare Solutions
9.8 Alpine Data Labs
9.9 Alteryx
9.10 Amazon
9.11 Anova Data
9.12 Apache Software Foundation
9.13 Apple Inc.
9.14 APTEAN (Formerly CDC Software)
9.15 Athena Health Inc.
9.16 Attunity
9.17 Booz Allen Hamilton
9.18 Bosch Software Innovations: Bosch IoT Suite
9.19 BGI
9.20 Big Panda
9.21 Bina Technologies Inc.
9.22 Capgemini
9.23 Cerner Corporation
9.24 Cisco Systems
9.25 CLC Bio
9.26 Cloudera
9.27 Cogito Ltd.
9.28 Compuverde
9.29 CRAY Inc.
9.30 Computer Science Corporation (CSC)
9.31 Crux Informatics
9.32 Ctrl Shift
9.33 Cvidya
9.34 Cybatar
9.35 DataDirect Network
9.36 Data Inc.
9.37 Databricks
9.38 Dataiku
9.39 Datameer
9.40 Data Stax
9.41 Definiens
9.42 Dell EMC
9.43 Deloitte
9.44 Domo
9.45 eClinicalWorks
9.46 Epic Systems Corporation
9.47 Facebook
9.48 Fluentd
9.49 Flytxt
9.50 Fujitsu
9.51 Genalice
9.52 General Electric
9.53 GenomOncology
9.54 GoodData Corporation
9.55 Google
9.56 Greenplum
9.57 Grid Gain Systems
9.58 Groundhog Technologies
9.59 Guavus
9.60 Hack/reduce
9.61 HPCC Systems
9.62 HP Enterprise
9.63 Hitachi Data Systems
9.64 Hortonworks
9.65 IBM
9.66 Illumina Inc
9.67 Imply Corporation
9.68 Informatica
9.69 Inter Systems Corporation
9.70 Intel
9.71 IVD Industry Connectivity Consortium-IICC
9.72 Jasper (Cisco Jasper)
9.73 Juniper Networks
9.74 Knome,Inc.
9.75 Leica Biosystems (Danaher)
9.76 Longview
9.77 MapR
9.78 Marklogic
9.79 Mayo Medical Laboratories
9.80 McKesson Corporation
9.81 Medical Information Technology Inc. (MEDITECH)
9.82 Medio
9.83 Medopad
9.84 Microsoft
9.85 Microstrategy
9.86 MongoDB (Formerly 10Gen)
9.87 MU Sigma
9.88 N-of-One
9.89 Netapp
9.90 NTT Data
9.91 Open Text (Actuate Corporation)
9.92 Opera Solutions
9.93 Oracle
9.94 Palantir Technologies Inc.
9.95 Pathway Genomics Corporation
9.96 Perkin Elmer
9.97 Pentaho (Hitachi)
9.98 Platfora
9.99 Qlik Tech
9.100 Quality Systems Inc (QSI)
9.101 Quantum
9.102 Quertle
9.103 Quest Diagnostics Inc.
9.104 Rackspace
9.105 Red Hat
9.106 Revolution Analytics
9.107 Roche Diagnostics
9.108 Rocket Fuel Inc.
9.109 Salesforce
9.110 SAP
9.111 SAS Institute
9.112 Selventa Inc.
9.113 Sense Networks
9.114 Shanghai Data Exchange
9.115 Sisense
9.116 Social Cops
9.117 Software AG/Terracotta
9.118 Sojern
9.119 Splice Machine
9.120 Splunk
9.121 Sqrrl
9.122 Sumo Logic
9.123 Sunquest Information Systems
9.124 Supermicro
9.125 Tableau Software
9.126 Tableau
9.127 Tata Consultancy Services
9.128 Teradata
9.129 ThetaRay
9.130 Thoughtworks
9.131 Think Big Analytics
9.132 TIBCO
9.133 Tube Mogul
9.134 Verint Systems
9.135 VolMetrix
9.136 VMware (Part of EMC)
9.137 Wipro
9.138 Workday (Platfora)
9.139 WuXi NextCode Genomics
9.140 Zoomdata

10. Overall Big Data Market Analysis And Forecasts 2019-2024
10.1 Global Big Data Marketplace
10.2 Big Data Market by Solution Type
10.3 Regional Big Data Market

11. Big Data Market Segment Analysis And Forecasts 2019-2024
11.1 Big Data Market by Management Utilities 2019 - 2024
11.1.1 Market for Servers and Other Hardware
11.1.2 Market for Big Data Application Infrastructure and Middleware
11.1.3 Market for Data Integration Tools & Data Quality Tools
11.1.4 Big Data Market for Database Management Systems
11.1.5 Big Data Market for Storage Management
11.2 Big Data Market by Functional Segment 2019 - 2024
11.2.1 Big Data in Supply Chain Management
11.2.2 Big Data in Workforce Analytics
11.2.3 Big Data in Enterprise Performance Analytics
11.2.4 Big Data in Professional Services
11.2.5 Big Data in Business Intelligence
11.2.6 Big Data in Social Media & Content Analytics
11.3 Market for Big Data in Emerging Technologies 2019 - 2024
11.3.1 Big Data in Internet of Things
11.3.2 Big Data in Smart Cities
11.3.3 Big Data in Blockchain and Cryptocurrency
11.3.4 Big Data in Augmented and Virtual Reality
11.3.5 Big Data in Cybersecurity
11.3.6 Big Data in Smart Assistants
11.3.7 Big Data in Cognitive Computing
11.3.8 Big Data in CRM
11.3.9 Big Data in Spatial Information
11.4 Big Data Market by Industry Type 2019 - 2024
11.5 Regional Big Data Markets 2019 - 2024
11.5.1 North America Market for Big Data
11.5.2 South American Market for Big Data
11.5.3 Western European Market for Big Data
11.5.4 Central and Eastern European Market for Big Data
11.5.5 APAC Market for Big Data
11.5.6 MEA Market for Big Data

12. Appendix: Big Data Support Of Streaming IoT Data
12.1 Big Data Technology Market Outlook for Streaming IoT Data
12.1.1 IoT Data Management is a Ubiquitous Opportunity across Enterprise
12.1.2 IoT Data becomes a Big Data Revenue Opportunity
12.1.3 Real-time Streaming IoT Data Analytics is a Substantial Opportunity
12.2 Global Streaming IoT Data Analytics Revenue
12.2.1 Overall Streaming Data Analytics Revenue for IoT
12.2.2 Global Streaming IoT Data Analytics Revenue by App, Software, and Services
12.2.3 Global Streaming IoT Data Analytics Revenue in Industry Verticals
12.3 Regional Streaming IoT Data Analytics Revenue
12.3.1 Revenue in Region
12.3.2 APAC Market Revenue
12.3.3 Europe Market Revenue
12.3.4 North America Market Revenue
12.3.5 Latin America Market Revenue
12.3.6 ME&A Market Revenue
12.4 Streaming IoT Data Analytics Revenue by Country
12.4.1 Revenue by APAC Countries
12.4.2 Revenue by Europe Countries
12.4.3 Revenue by North America Countries
12.4.4 Revenue by Latin America Countries
12.4.5 Revenue by ME&A Countries

For more information about this report visit

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

Media Contact:

Research and Markets
Laura Wood, Senior Manager

For E.S.T Office Hours Call +1-917-300-0470
For U.S./CAN Toll Free Call +1-800-526-8630
For GMT Office Hours Call +353-1-416-8900

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Cision View original content:

SOURCE Research and Markets

[ Back To's Homepage ]

Technology Marketing Corporation

35 Nutmeg Drive Suite 340, Trumbull, Connecticut 06611 USA
Ph: 800-243-6002, 203-852-6800
Fx: 203-866-3326

General comments:
Comments about this site:


© 2019 Technology Marketing Corporation. All rights reserved | Privacy Policy