TMCnet News

Maxim's Latest Ultra-Low-Power PMIC Enables Highest Sensitivity Optical Measurements
[January 09, 2019]

Maxim's Latest Ultra-Low-Power PMIC Enables Highest Sensitivity Optical Measurements


SAN JOSE, Calif., Jan. 9, 2019 /PRNewswire/ -- Designers of always-on wearable and internet of things (IoT) devices now have an easier way to extend battery runtime while shrinking form factor with the latest tiny, highly integrated power-management IC (PMIC) from Maxim Integrated Products, Inc. (NASDAQ: MXIM).  The ultra-low-power MAX20345 integrates a lithium charger and debuts a unique architecture that optimizes the sensitivity of optical measurements for wearable fitness and health applications.

The ultra-low-power MAX20345 power-management IC (PMIC) from Maxim integrates a lithium charger and features a unique architecture that optimizes the sensitivity of optical measurements for wearable fitness and health applications. With the MAX20345, designers of always-on wearables and IoT devices can extend battery runtime while maintaining compact form factors.

In wearables, optical-sensing accuracy is impacted by a variety of biological factors unique to the user. Designers have been striving to increase the sensitivity of optical systems, in particular the signal-to-noise ratio (SNR), to cover a broader spectrum of use cases. Traditional low-quiescent-current regulators favored in wearable applications come with tradeoffs that degrade SNR on the wrist, such as high-amplitude ripple, low-frequency ripple and long-settling times. Some designers have even turned to high-quiescent-current alternatives to overcome these drawbacks, but they must deal with increased power consumption, which reduces battery runtime or requires a larger battery. The MAX20345 features a first-of-its-kind buck-boost regulator based on an innovative architecture that's optimized for highly accurate heart-rate, blood-oxygen (SpO2) and other optical measurements. The regulator delivers the desired low-quiescent-current performance without the drawbacks that degrade SNR and, as a result, can increase performance by up to 7dB (depending on measurement conditions).

The MAX20345 is also the latest in a line of ultra-low-power PMICs for small wearables and IoT devices that help raise efficiency without sacrificing battery runtime. To meet these needs, the MAX20345 integrates a lithium-ion battery charger; six voltage regulators, each with ultra-low quiescent current; three nanoPower bucks (900nA typical) and three LDO regulators with ultra-low quiescent current (as low as 550nA typical).  Two load switches allow disconnecting of system peripherals to minimize battery drain. Both the buck-boost and the bucks support dynamic voltage scaling (DVS), providing additional power-saving opportunities when lower voltages can be deployed under favorable conditions. The MAX20345 is available in a 56-bump, 0.4mm pitch, 3.37mm x 3.05mm wafer-level package (WLP).

Key Advantages

  • Superior Performance for Optical Systems: the integrated buck-boost regulator provides the low ripple at high frequency that will not interfere with optical measurements. These short settling times support the high-sensitivity optical-sensor measurements on wearables.
  • Extended Battery Life: regulators with nanoPower quiescent current reduce sleep and standby power, which in turn extends battery runtime and allows for smaller battery size. High-efficiency regulators preserve battery energy during active states.
  • Small Footprint: by eliminating multiple discrete components, the MAX20345 provides a sophisticated power architecture for space-constrained wearable and IoT designs.

Commentary

  • "With sales of fitness and wellness wearable electronics expected to rise to over 114 million units by 2020, there is increasing demand for better, more precise sensing technology for measuring health vitals including heart rate and blood-oxygen levels," said Kevin Anderson, senior analyst for power semiconductors at IHS Markit.
  • "Maxim is continuing to deliver precedent-setting innovations in the wearable healthcare arena. Our new MAX20345 extends our portfolio of ultra-low-power PMICs for wearable and always-on applications, bringing to the market a solution that enables the highest sensitivity optical sensing in wrist-worn form factors for more accurate vital-sign measurements," said Frank Dowling, director of business management, Industrial & Healthcare Business Unit, at Maxim Integrated.  

Availability and Pricing

  • The MAX20345 is available at Maxim's website for $4.45 (1000-up, FOB USA) and is also available from authorized distributors
  • The MAX20345EVKIT# evaluation kit is available for $57.00

About Maxim Integrated
Maxim Integrated develops innovative analog and mixed-signal products and technologies to make systems smaller and smarter, with enhanced security and increased energy efficiency. We are empowering design innovation for our automotive, industrial, healthcare, mobile consumer and cloud data center customers to deliver industry-leading solutions that help change the world. Learn more at https://www.maximintegrated.com.





Contact:             

Mariel Santos


408-601-3145


[email protected]


 

Logo for Maxim Integrated Products Inc. (PRNewsfoto/Maxim Integrated)

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/maxims-latest-ultra-low-power-pmic-enables-highest-sensitivity-optical-measurements-300772632.html

SOURCE Maxim Integrated Products, Inc.


[ Back To TMCnet.com's Homepage ]