TMCnet News

University of Maryland Researchers Accept NASA Mission: Build a Better Battery for Space Exploration
[August 18, 2015]

University of Maryland Researchers Accept NASA Mission: Build a Better Battery for Space Exploration


COLLEGE PARK, Md., Aug. 18, 2015 /PRNewswire-USNewswire/ -- A research team from the University of Maryland Energy Research Center (UMERC) has been awarded $1 million in NASA funding for its Garnet Electrolyte Based Safe, Lithium-Sulfur Energy Storage project, a game-changing battery technology that could potentially power future space missions.

The all solid-state battery, developed by A. James Clark School of Engineering faculty members Eric Wachsman, Liangbing Hu, and Chunsheng Wang, is a triple threat, solving the typical problems that trouble existing lithium-ion batteries: safety, performance, and cost.

"This all solid-state technology really changes everything, as it addresses all of the concerns we have about batteries today, and has brought the University of Maryland to the cutting-edge of battery research," said Wachsman, who serves as the director of UMERC and a professor in the Department of Materials Science and Engineering.

Lithium-ion batteries, which typically contain a liquid organic electrolyte, can catch fire under certain conditions, as shown by reported laptop and electric vehicle battery fires and even the temporary grounding of the Boeing 787 fleet for a series of battery fires. The research team's use of a solid-state ceramic electrolyte eliminates that risk.

"Lithium-ion batteries are used in everything from consumer electronics such as cell phones and laptops to electric vehicles," said Hu, an assistant professor of materials science and engineering. "This technology is safer than existing liquid-based lithium-ion batteries, and offers a much higher energy density."

Through his work on fuel cells, Wachsman has created and perfected low-cost ceramic fabrication techniques, demonstrating the ability to fabricate thin-film ceramic battery electrolytes with very low resistance. The high stability of these garnet ceramic electrolytes enabled the team to use metallic lithium anodes, which contain the greatestpossible theoretical energy density and are considered to the holy grail of batteries. Combined with high capacity sulfur cathodes, this all solid-state battery technology offers a potential unmatched energy density that far outperforms any lithium-ion battery currently on the market, making this technology uniquely capable of meeting NASA's goal of reducing mass required to store electrical power in space.



"In addition to its intrinsic safety, another unique feature of our solid-state garnet lithium-sulfur battery is that the dense garnet electrolyte can prevent the shuttle reaction of sulfur cathodes and dendrite of lithium anodes, allowing the realization of high energy lithium-sulfur chemistry," said Wang, who is an associate professor in the Department of Chemical and Biomolecular Engineering. This dramatically improves the longevity for lithium-sulfur batteries.

The team's Phase I award last year supported proof-of-concept research that demonstrated the technology's performance and reliability. Now in Phase II of NASA's Game Changing Development (GCD) program, Wachsman, Hu, and Wang will focus on optimizing the cell structure and scaling up its size to a commercially viable format. In 2016, the team will submit a proposal for up to $2 million in Phase III funding to make a full-scale prototype designed to achieve NASA's ultimate goal of sending these batteries into space.


The technology was born from Wachsman and Hu's solid-state battery project, in collaboration with University of Calgary associate professor Venkataraman Thangadurai, funded by the U.S. Department of Energy Advanced Research Projects Agency - Energy (ARPA-E). In 2014, Wachsman, Hu, and Thangadurai won the University of Maryland Invention of the Year Award in the physical sciences category for this solid-state battery technology.

Read NASA's press release.

Learn more about UMERC's battery research.

About UMERC
The University of Maryland Energy Research Center (UMERC) is a multidisciplinary initiative dedicated to advancing the frontiers of energy science and technology, with a special focus on forward-looking approaches for alternative energy generation and storage. The Center focuses on a broad array of research areas critical for future energy technology development. For more information about UMERC, visit www.umerc.umd.edu.

About the University of Maryland
The University of Maryland is the state's flagship university and one of the nation's preeminent public research universities. A global leader in research, entrepreneurship and innovation, the university is home to more than 37,000 students, 9,000 faculty and staff, and 250 academic programs. Its faculty includes three Nobel laureates, three Pulitzer Prize winners, 47 members of the national academies and scores of Fulbright scholars. The institution has a $1.8 billion operating budget, secures $500 million annually in external research funding and recently completed a $1 billion fundraising campaign. For more information about the University of Maryland, visit www.umd.edu.

 

To view the original version on PR Newswire, visit:http://www.prnewswire.com/news-releases/university-of-maryland-researchers-accept-nasa-mission-build-a-better-battery-for-space-exploration-300129932.html

SOURCE University of Maryland A. James Clark School of Engineering


[ Back To TMCnet.com's Homepage ]