TMCnet News

Research and Markets: Global RNAi Market 2015-2024 - Technologies, Markets and Companies (Updated Edition)
[May 28, 2015]

Research and Markets: Global RNAi Market 2015-2024 - Technologies, Markets and Companies (Updated Edition)


Research and Markets (http://www.researchandmarkets.com/research/l6s549/rnai) has announced the addition of Jain PharmaBiotech's new report "RNAi - Technologies, Markets and Companies" to their offering.

RNA interference (RNAi) or gene silencing involves the use of double stranded RNA (dsRNA). Once inside the cell, this material is processed into short 21-23 nucleotide RNAs termed siRNAs that are used in a sequence-specific manner to recognize and destroy complementary RNA. The report compares RNAi with other antisense approaches using oligonucleotides, aptamers, ribozymes, peptide nucleic acid and locked nucleic acid.

Various RNAi technologies are described, along with design and methods of manufacture of siRNA reagents. These include chemical synthesis by in vitro transcription and use of plasmid or viral vectors. Other approaches to RNAi include DNA-directed RNAi (ddRNAi) that is used to produce dsRNA inside the cell, which is cleaved into siRNA by the action of Dicer, a specific type of RNAse III. MicroRNAs are derived by processing of short hairpins that can inhibit the mRNAs. Expressed interfering RNA (eiRNA) is used to express dsRNA intracellularly from DNA plasmids.

Delivery of therapeutics to the target tissues is an important consideration. siRNAs can be delivered to cells in culture by electroporation or by transfetion using plasmid or viral vectors. In vivo delivery of siRNAs can be carried out by injection into tissues or blood vessels or use of synthetic and viral vectors.



RNAi can be rationally designed to block the expression of any target gene, including genes for which traditional small molecule inhibitors cannot be found. Areas of therapeutic applications include virus infections, cancer, genetic disorders and neurological diseases. Research at academic centers that is relevant to RNAi-based therapeutics is mentioned.

Regulatory, safety and patent issues are discussed. Side effects can result from unintended interaction between an siRNA compound and an unrelated host gene. If RNAi compounds are designed poorly, there is an increased chance for non-specific interaction with host genes that may cause adverse effects in the host. However, there are no major safety concerns and regulations are in preliminary stages as the clinical trials are still ongoing and there are no marketed products. Many of the patents are still pending.


The markets for RNAi are difficult to define as no RNAi-based product is approved yet but several are in clinical trials. The major use of RNAi reagents is in research but it partially overlaps that of drug discovery and therapeutic development. Various markets relevant to RNAi are analyzed from 2014 to 2024. Markets are also analyzed according to technologies and use of siRNAs, miRNAs, etc.

Profiles of 161 companies involved in developing RNAi technologies are presented along with 233 collaborations. They are a mix of companies that supply reagents and technologies (nearly half of all) and companies that use the technologies for drug discovery. Out of these, 33 are developing RNAi-based therapeutics and 35 are involved in microRNAs. The bibliography contains selected 600 publications that are cited in the report. The text is supplemented with 38 tables and 12 figures.

Key Topics Covered:

Executive Summary

1. Technologies for suppressing gene function

2. RNAi Technologies

3. MicroRNA

4. Methods of delivery in RNAi

5. RNAi in Research

6. RNAi in drug discovery

7. Therapeutic applications of RNAi

8. Safety, regulatory and patent issues

9. Markets for RNAi Technologies

10. Companies involved in RNAi Technologies

11. References

For more information visit http://www.researchandmarkets.com/research/l6s549/rnai

Source (News - Alert): Jain PharmaBiotech


[ Back To TMCnet.com's Homepage ]