
IT IS TIME TO GET SERIOUS ABOUT APIs

Application programming interfaces (APIs) are no longer

new to the telecommunications industry, but their true

potential as a game-changer remains untapped. When

thinking about APIs, the most important thing to remember

is that they are not a technology for squeezing revenue out

of existing business models. They engender new ones. No

company gets it right all the time, but the most successful

of them are continuously improving their API ecosystems.

Creating a continuously evolving API program is not easy.

It requires a willingness to commit to a strategy and

monitor its progress closely. It requires continued analysis

and modification, because even the best programs do not

start out that way. Perhaps most importantly, it requires

embracing APIs as an ongoing part of a larger business

strategy, one that eschews simple and familiar monetiza-

tion models for more complex, but ultimately more

rewarding outcomes.

A successful API program serves as the foundation of a

platform strategy. Creating a powerful platform in turn

depends on tying all of these functions into a repeatable

framework that makes platform adoption faster and

more efficient.

HOW APIs BUILD DOMINANT PLATFORMS
You do not have to do much digging to find examples from

outside the telecoms industry that illustrate the importance

of continuously refining an ecosystem. In particular, the

following two juggernauts are now squaring off across

several markets, and theirs is a battle of platform

versus platform.

Amazon

Information technology initiatives, even inside technology-

driven companies, are known for going awry. They start

and stop. They are altered midstream. Executives buy

into them then lose interest. It can be tempting to think of

API-driven strategies as something to try out. Maybe it will

work, maybe not.

2

It is time to get serious about APIs
Alcatel-Lucent Article

Jeff Bezos, Amazon’s CEO, did not take that approach

with APIs. A decade ago he issued an edict that said from

that point forward, all data and functionality in Amazon

projects would be exposed through services. Furthermore,

every service had to be built in a way that would allow

it to be exposed outside Amazon. It took years of effort,

but Amazon learned a tremendous amount along the way,

and now the company is a platform. Everything Amazon

does, from managing cloud storage to delivering customer

recommendations, can be exposed to other internal

applications, and where needed, to third-party developers.

The absolute value of Amazon’s platform approach is

difficult to calculate, but a sample of the long list of seem-

ingly disparate revenue streams beyond retail illuminate

the benefits of a service-driven architecture: App Store,

Associates, Cloud Drive, Cloud Reader, Payments, and Web

Services. As opportunities arise, Amazon can capitalize on

them and build out new applications, each with tailored

business models, as if it were all planned in advance. This

flexibility gives Amazon a tremendous strategic advantage

as it moves into new markets.

Apple

From the earliest days of the Macintosh computer, Apple

had to expose certain APIs to entice programmers to

create software for its operating system. The company

was famous for enforcing The Macintosh Way, and

equally famous for making changes to developer APIs

that appeared arbitrary to third-party developers. Still,

Apple needed to accommodate them to keep the operating

system alive, and in turn to sell computers.

When the iPhone arrived, Steve Jobs was adamantly

against allowing third-party development for the device.

Apple’s initial pitch to developers was this: Build web

widgets for the iPhone. They reacted with a resounding

call for deeper access. They wanted to build full applica-

tions that could take full advantage of everything the

iPhone offered.

Jobs resisted, but the demand could not be ignored. Caring

for external developers takes a lot of work, from prepping

APIs for release to the outside world, to sophisticated

documentation and tutorials, to managing expectations.

The last point is particularly salient with a product that

is early in its life cycle. Later versions of the iPhone’s iOS

provided more functionality by way of more efficient

and polished core code. This in turn required changes to

the APIs, and brought with it the risk of breaking every

application on the device, the content which drove its

adoption.

Apple has managed to walk the line between continuous

innovation and shepherding third-party developers, primarily

by telegraphing as far in advance as possible when APIs

are to be deprecated. This gives developers time to make

changes to their applications and submit them to the App

Store. It also gives them time to share techniques for

avoiding pitfalls in migration from the old to the new.

The time, money, and effort Apple has put into its ecosystem

have given rise to a staggeringly successful profit machine.

TAKING A LIFE CYCLE APPROACH
TO PLATFORM DEVELOPMENT

The trailblazing in other industries has already been done,

and it has become clear that winning with APIs is about

building a repeatable process and structure just as you

would for any other part of your business. There are a vast

number of processes to implement and best practices to

put in place. However, at the simplest level there are three

key phases to consider when building out an API program.

Definition is the first phase. This is about goal setting for

the business (yes, this is a business) and based on that

goal, it is about identifying the value in your business that

is critical to achieve your goal. Design is vitally important.

How the developers inside or outside your company access

your business will play a critical role in the program’s

success. Simplicity of use, regardless of the complexity

of the information being accessed, is a must. Lastly, the

deployment model is what makes it a business. Think about

security. Who has access and how much access? Think

about efficiency. How do you optimize traffic and perfor-

mance? Think about operations. What do you do when you

need to update a service or stop offering the service? The

methodology takes on the shape of the business you want.

3

It is time to get serious about APIs
Alcatel-Lucent Article

Definition

You cannot reach your goal if you do not have one. What

is your goal? Do you want to extend engagement, broaden

your addressable market, increase revenue, decrease

product cycle time, create barriers for entry to competitors,

or is it something else? APIs can support a wide variety

of implementations, from tiered service level agreements

(SLAs) and quality of service (QoS) guarantee deals with

content providers, to integrated billing arrangements with

app developers, to traffic-smoothing incentives for consumers,

and beyond. However, you will not find the correct

implementation without a clearly articulated business goal.

It can be tempting to think that if you build it they will

come. The Long Tail has value, but it will support, rather

than drive your strategy. You want to forge relationships

with players who are big enough to matter and agile

enough to move as fast as your ecosystem will allow.

Larger, slower companies may look like good matches for

partnering, but unless they are API-savvy, they will burn

up too much time trying to get their own infrastructure

ready to work with yours. Seek out API-driven businesses.

With a clear long-term goal and intermediate targets in

mind, you will have to determine which pieces of your

existing functionality, services, and data can be tapped

with APIs. You may have more assets here, including

private APIs, than you might think. The trick is discerning

which components can be modified for use in your API

initiative, and which must be rewritten entirely.

As you build your strategy, it is important to remember

that with APIs flexibility is the byword. Experiment with

pricing levels. Communicate early and often with partners

to understand what will help them succeed. You must

always be watching, adjusting, and communicating. In all

cases, a relentless emphasis on key performance indicators

(KPIs) should drive every aspect of your API strategy, and

the metrics you gather should be paired with your business

goals so that you can make adjustments with confidence.

Design

As you build from existing capabilities and add new ones,

be sure your technology choices match your business goals.

Your back-end capabilities need to be capable of supporting

the type and volume of calls being made by your APIs.

Security and compliance measures need to be incorporated

into every point on the API round-trip journey.

The protocols you use, the structure and complexity of the

APIs and their inputs and outputs will have tremendous

bearing on whether and how third-party developers

use them. It is important to remember that a technically

superior protocol may not always win out. The stamp

of approval from a standards body does not guarantee

credibility either. Sometimes de facto standards win, and

which ones dominate depends on the industry. Pay close

attention to the standards your most important partners

are using. In the API world, developers gravitate toward

technologies that other developers are using.

With APIs, the details matter. It is not enough, for example,

to support OAuth authentication. Early implementers will

likely have embraced version 1.0, while newcomers may

have opted for 2.0 or decided to sit on the fence as security

concerns are hashed out. You need to know the advantages

and disadvantages of each protocol you support, and stay

abreast of changes; mindshare can change rapidly.

Supporting developers is critical to the success of your API

strategy. If by using your APIs they can achieve their own

goals of revenue and visibility, you are halfway there. The

first step is to make your APIs work for developers. That

means naming them in a fashion that minimizes confusion,

designing them in a way that streamlines rather than

introduces complexity, maintaining concise scope for each

API, and adhering to established API coding best practices.

It also means using the API before exposing it to external

developers, preferably by bringing in someone who was

not part of the API team to use it on a real project.

Lay the foundation then nurture a vibrant ecosystem

with documentation, sample code, forums, and other tools

that make it easy for them to incorporate your APIs into

powerful, useful apps, and iterate your APIs based on

what developers are doing with them. Do these things

and ecosystem success will propel platform success.

As with your business strategy, in developing a healthy

ecosystem around your API it is critical to think of it

as tending to a garden, rather than building a house.

Sometimes you have to remove and replant. Simple Object

Access Protocol (SOAP) is an instructive example. Microsoft

developed the SOAP protocol and pushed it heavily for

awhile, but over time it became clear that many developers

www.alcatel-lucent.com Alcatel, Lucent, Alcatel-Lucent and the Alcatel-Lucent logo are trademarks
of Alcatel-Lucent. All other trademarks are the property of their respective owners. The information
presented is subject to change without notice. Alcatel-Lucent assumes no responsibility for
inaccuracies contained herein. Copyright © 2012 Alcatel-Lucent. All rights reserved.
M2012053293 (June)

preferred Representational State Transfer (REST)-ful

services. The company listened, and has built a wide

variety of tools for RESTful development and translation

with SOAP. To Microsoft it was more important to stay

relevant to developers than to advance a specific web

services technology.

Deployment

The rigor you apply to the business planning and design

of your API program applies in the deployment phase as

well. Technical performance must be tested against target

metrics. Are response times hitting the mark? In simulated

peak load situations, is the system scaling up appropriately?

Does black hat testing reveal security holes? Here the

engineering-driven attention to detail of service provider

culture is a competitive advantage. Leverage it to ensure

that services on the back end and the APIs in front of them

work exactly as planned.

An API platform does not get built once; it is continuously

monitored and improved based on developer response,

application usage, and evolving business strategy. Access

rights, rate limits, security, performance management, and

scaling all must be managed diligently.

It is also imperative that as you build a third-party developer

community, you communicate clearly about shared goals,

so developers can understand and work within your

framework. The more they know of both the how and the

why of your policies, the more empowered they will be to

create apps that showcase your APIs.

The right analytics tools can help you maintain control of

API use, and they can help you understand how you are

meeting your business objectives. As you gain knowledge

of how your API program is progressing against technical

requirements and business goals, you can rapidly iterate

through the definition, design, and deployment cycle.

THE ALCATEL UCENT
API LIFECYCLE METHODOLOGY
The Design, Define, Deploy approach is at the heart of the

Alcatel-Lucent API Lifecycle Methodology. To find out more

about how we can help your organization build a powerful

platform business, please contact AE@alcatel-lucent.com.

