ITEXPO begins in:   New Coverage :  Asterisk  |  Fax Software  |  SIP Phones  |  Small Cells

March 2001

Scot Robertson

System Issues Affecting QoS:
Dealing With Latency


 Packet networks have tremendous advantages because they allow data, video, and voice to be carried over a single network with optimal efficiency. They deliver true multi-service capabilities that give us voice, video, and data all in one unit. Latency is a major problem with packets carrying real-time data such as voice and video because packet networks are, by definition, variable latency transmission devices.

Latency Defined
Latency is the time it takes for a packet of data to travel from one point on a network to another. Delayed, disordered, duplicate, and missing packets cause latency. Most latency issues occur in the transmission across the virtual circuit, where the connection appears to be a direct link, but can actually involve routing information over a defined, but longer path in the network. It is the major voice quality problem for packetized networks. Unfortunately, almost every component of a VoIP system introduces latency. The challenge is in minimizing latency to acceptable quality levels.

The quality of service (QoS) levels needed for real-time processing of phone calls are dependent upon network conditions and can vary substantially. Networks are defined by their bandwidth, indicating how much information can be carried under the best network conditions. However, bandwidth is shared by the users of a network and is subject to variations in call performance. In addition, different voice compression/decompression algorithms used in VoIP have different bandwidth requirements. Finally, routers can cause quality problems in networks due to induced delays because routing is not a continuous process.

In the gateway, the interfaces from the telephone network and IP network can cause processing delays associated with the different speech algorithms. Buffering and echo cancellers can also cause delays. Different speech vocoding (voice coding/decoding) introduce latency as well. These latency conditions are foreign to the circuit-switched world where information physically arrives in order and on time. In the packet-based network, there is neither fixed time nor fixed order. Additionally, the latency will be variable and often unpredictable. There is always the possibility of packets that are lost, out of order and delayed in IP networks.

What can be done? At the gateway where the transition between the user and the network takes place, the transition from circuit-switch to data networks to multi-service networks also takes place. Properly constructed and configured gateways can minimize the effects of network latency.

About Jitter
Jitter is distortion caused by a lack of synchronization of signals. Jitter can be caused by packets traveling via different paths if a router is congested -- the higher the congestion, the greater the jitter. The speech codec portion of a VoIP system requires data be delivered at a constant rate. If the intervening network has a variable delivery rate, then the VoIP system must buffer data received from the network before sending it to the codec. This buffering increases the latency.

The effects of jitter are mitigated by the use of a jitter buffer that stores packets and identifies their order. It interprets the network behavior and determines the holding time of the packet. A good jitter buffer design is adaptive to the network. The jitter buffer should be small and flexible so that it can expand and adapt if network conditions change since network size affects both jitter and latency. Jitter buffer tracks the rate of change and adapts accordingly.

Gateway design can minimize the amount of buffering needed. The gateway defines the packet size small enough to reduce latency problems, but large enough so sufficient information is transmitted to minimize packet overhead.

Speech Vocoders
Two of the more common vocoder (voice coder) standards are G.729AB and G.723.1A, which have packet loss concealment procedures. These coders model speech production mechanisms where a small set of parameters represent a vocal tract model, which results in low bit-rate. The maximum latency incurred is dependent upon the vocoder used in a particular IP system.

With lost packets, the speech vocoder will interpolate speech from past speech frames. However, there are no clear instructions on how to use the packet loss concealment feature, and it must be adequately called to conceal a lost packet and hence improve speech quality. Vocoders only contribute to a part of the latency in the gateway. There are also contributors to latency that are not controllable in the gateway including the codec. The codec causes latency, but there is nothing that can be done about it because it is inherent to the applicable VoIP standards. However, gateways can be configured to run low-latency Vocoders like G.711 as the default and to negotiate during call configuration for the lowest latency Vocoder.

The Bottom Line
Different system implementations in the voice gateway architecture can achieve higher quality, lower latency, and lower variance throughput. It is important to understand how latency affects speech quality and how a gateway can be configured to reduce latency. The main areas to look at include the implementation of the data buffer, echo canceller, and the jitter buffer. The jitter buffer needs to be adaptive (smart), the data buffering delays should be minimized, and the echo canceller should not introduce any additional latency.

Scott Robertson is product line manager for Remote Access Products and Fabian Lis, senior Voice Software engineer at Analog Devices. Analog Devices is a semiconductor company that develops, manufactures, and markets high-performance integrated circuits (ICs) used in signal-processing applications. Please visit their Web site at www.analogdevices.com.

[ Return To The March 2001 Table Of Contents ]

Today @ TMC
Upcoming Events
ITEXPO West 2012
October 2- 5, 2012
The Austin Convention Center
Austin, Texas
The World's Premier Managed Services and Cloud Computing Event
Click for Dates and Locations
Mobility Tech Conference & Expo
October 3- 5, 2012
The Austin Convention Center
Austin, Texas
Cloud Communications Summit
October 3- 5, 2012
The Austin Convention Center
Austin, Texas